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Mathematical Representations of the World:
Power Law, Tipping Point and Logistic Function

The “Power Law”

Many natural and economic phenomena operate according to a “power law.” That is, the
relationship between two variables, y and x, can be written:

ky ax

where a and k are constants. One of the most familiar power laws is the law of gravity, where
the attraction between two bodies is inversely proportional to the square of the distance between
them.

In this course we have seen several examples of power law relationships. These include:

 The “Mount Fuji” distribution
of natural resources, which
says that if we graph resource
quality against quantity, we
will find a small sharp high
value peak, and a broad low-
value shoulder.

 The Pareto distribution of
wealth, which says 20% of the
population own 80% of the
wealth and vice versa. The
Pareto distribution applies to
many social phenomena, such
as size of cities and the size of
firms.

 “Hyperbolic” discounting—which is the way humans and animals actually discount
the future, instead of exponential discounting which is more “logical.”

 Unit elasticity demand curve, on which PxQ=K, where K is a constant. Alternatively
P=K/Q. Unit elasticity means that spending remains constant, because any price
increase is matched by an equivalent drop in quantity.

For more detail, see Wikipedia on power law and Pareto distribution.

The “Tipping Point”

In his best-seller, The Tipping Point, Malcolm Gladwell popularized the idea of a point where
a very small change can make a huge difference to outcomes. There are many such points in
nature and economics. Other related terms include a “phase change” or “discontinuity,” or
“critical point.”

Simple discontinuities are things like cliffs, or edges of lakes and oceans.



2

Here’s a more sophisticated example: Suppose people walk across a field. We want to
minimize the damage to the grass. If there are just a few people, they should spread out. But as
more and more people cross the field, there comes a point when they will do less damage if they
walk single file. A single trampled path is less harmful than trampling scattered all over the field.

The field example translates directly into “succession” of economic land uses. When
population density is low, people live on large plots, take their water from wells, and dump their
waste in a septic tank (or privy). As density increases, there comes a point when it’s more cost-
effective to build sewers and water systems. As density increases further, single-family houses
switch to townhouses, then to apartment buildings.

Taxes can also have tipping point effects, generally for the worst. An example is the tomato
harvester problem, in which a relatively low payroll tax tips the processing tomato industry from
hand-picked labor-intensive cultivation to machine-picked

There’s a tipping point in the logistic function below: virtually all species have a critical
population level such that if population falls below it, the population will continue to decline all
the way to extinction.

The Simple Logistic Curve

The simple logistic curve is a handy way to represent not only living populations, but many
systems that grow exponentially at first but then approach a limit. For example, a new business
may grow rapidly at first, but then converge to a limit as competitors move in. At low rates of
growth, the logistic formula gives a characteristic “S” function. At higher rates of growth, the
logistic function can produce oscillating patterns; at even higher rates it goes chaotic. See James
Glieck, Chaos: Making a New Science, Viking, 1987, chapter on “Life’s Ups and Downs.” Also
see Wikipedia on logistic function.

Let:

Nt = population at time t,

K = carrying capacity or maximum long-run population

B = base level, below which population cannot survive

r = growth factor

Then: The first equation gives the population at time t+1 as a function of population at time
t. The second equation gives the growth or change in population from t to t+1.
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Where population is close to the base level, growth is approximately exponential, starting
from base B, that is:
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As population approaches K, growth falls to zero.

Setting the first derivative of Nt equal to zero shows that growth is maximum halfway
between B and K, or at

max
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This is also the inflection point in the population curve, that is the point at which the curve
switches from an increasing rate of growth to a decreasing rate.

If the initial value of Nt is greater than K, growth is negative, and population falls back to K.

If the initial value of Nt is less than B, growth is negative, and population falls to zero.

Point B is an unstable equilibrium, a “tipping point,” where the slightest deviation in either
direction leads either to population growth or population collapse. It is a good way to represent
the fact that once populations of most species fall below a certain level, the species will
inevitably go extinct. For example some species, like the passenger pigeon, breed communally.
Below a certain level, they cannot breed successfully.

Notice that the growth factor, r, is not the same as growth:
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Growth is also not the same as growth rate, which is growth divided by the population above
base B, or
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The maximum sustainable yield or MSY of a population is the maximum that can be
harvested without sending the population into decline. It occurs at the peak of the growth curve,
at Ngmax = (K+B)/2, shown above. From this it follows that the MSY formula is:

4
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


If the MSY is harvested when the population is above the maximum growth point, (K+B)/2,
the population will decline until it reaches the maximum growth point, where population will
stabilize. However, if MSY is harvested when population is below the maximum growth point,
the population will continue to decline. Unless harvests are reduced, the population will
eventually get below B, and head for extinction even with no further harvesting. Thus Ngmax =
(K+B)/2 under MSY harvesting is itself another tipping point or unstable equilibrium, where the
tiniest excess can send the population into decline.

Here are graphs of a logistic function for K = 100, B = 20 and r = .05. The first graph shows
population for three starting points: slightly above B, red line; slightly below B, pink line; and
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above K, orange line. For these parameters, the point of maximum growth occurs at population
of 60, halfway between B = 20 and K = 100. The MSY = r(K-B)/4 = 1. See Cleveland Logistic
Function.xls

Logistic Function: Population and Growth
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Logistic Function: Growth and Rate
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If we increase the growth factor, r, the logistic function rises to K faster and faster. Then
around r = 1.2, it starts to oscillate before settling down. As r rises, the oscillations get more
pronounced. The next graph shows population and growth for r = 1.95.

Logistic Function: Population and Growth: r = 1.95
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Eventually, population and growth go chaotic. The next graphs shows patterns for r = 2.7.
Some fast-growing populations such as lemmings seem to behave chaotically.

Logistic Function: Population and Growth: r = 2.7
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Logistic Function: Population: r = 2.7
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In a population with a high growth factor, r, it can be difficult to identify either carrying
capacity, K, or maximum sustainable yield, MSY. It can also be difficult to determine whether
precipitous population declines are due to the naturally chaotic dynamics of the population or to
over-harvesting or to other human impact on related ecosystems. That’s what makes ecology so
exciting!


